biochemical
systematics
and ecology

Available online at
ScienceDirect
www.sciencedirect.com

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright
Chemical constituents from the leaves of *Drypetes gerrardii*

Margaret Mwihaki Ng’ang’a, Sumesh Chhabra, Caroline Langat-Thoruwa, Hidayat Hussain, Karsten Krohn

Department of Chemistry, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya

**Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany*

Received 27 August 2007; accepted 18 September 2007

Keywords: *Drypetes gerrardii*; Euphorbiaceae; Triterpenes; Flavones

1. Subject and source

The genus *Drypetes* belongs to the family Euphorbiaceae and constitutes about 160 species, worldwide with many species being found in Africa. *Drypetes gerrardii* J. Hutch (Manyenye—Kikuyu; Ol-durdien—Maasai) is a large tree and one of the many species of the *Drypetes* genus found in Kenya. Other species that are widely distributed in Kenya include *Drypetes natalensis* J. Hutch and *Drypetes aromacia* Pax & Hoffm (Kokwaro, 1976).

The leaves of *D. gerrardii* were collected in Kilifi, Coast province in Kenya, in July 2004 and identified by Simon Mathenge, of Nairobi University, Kenya. A voucher specimen (MM/07/04) is deposited in Nairobi University herbarium, Chiromo Campus.

2. Previous work

There are no reports on phytochemical investigation of *D. gerrardii* J. Hutch.

3. Present study

The dried and powdered leaves (1 kg) of *D. gerrardii* were exhaustively and sequentially extracted with petroleum ether, CH$_2$Cl$_2$, EtOAc and MeOH. Each extract was concentrated in vacuo to obtain petroleum ether-, chloroform- and ethyl acetate-soluble fractions, respectively. The petroleum ether and the CH$_2$Cl$_2$ crude extracts were combined based on their similarity on the TLC plate. The combined extract (32.6 g) was subjected to column chromatography on silica gel using petroleum ether, petroleum ether–EtOAc, EtOAc–MeOH and finally, pure MeOH as the mobile phase to yield 95 fractions (F$_{1-95}$). Fractions 15–35 were combined and further separated by silica gel column chromatography eluting with petroleum ether–EtOAc (3:1) to give white cotton needles of friedelin (I, 50 mg) (Patra et al., 1990).
and epifriedelanol (2, 10 mg) (Betancor et al., 1980). Similarly, repeated column chromatography of F54–67, which were eluted with petroleum ether–EtOAc (3:2) furnished friedelanol methyl ether (3, 12 mg) (Samaraweera et al., 1983). Further purification of F70–75 [petroleum ether–EtOAc (5:4:5)] and F78–85 [petroleum ether–EtOAc (3:7)] on a Sephadex LH-20 column with CH2Cl2–MeOH (7:3) as eluant combined with repeated crystallization using acetone afforded 5β,24-cyclofriedelan-3-one (4, 8.6 mg) (Connolly et al., 1986).

The crude ethyl acetate extract (15 g) was similarly chromatographed on a silica gel column and eluted with a gradient of petroleum ether, CH2Cl2, EtOAc, and MeOH yielding 65 fractions (F1–65). Repeated column chromatography of F20–30 using a 5% stepwise gradient of petroleum ether and ethyl acetate afforded 3-epimoretenol (5, 6.5 mg) (Khastgir et al., 1967). Similarly repeated CC of fraction F31–35, eluted with a mixture of petroleum ether–EtOAc (8:2) and further purification in a Sephadex column using CH2Cl2–MeOH (1:1) gave resinone (6, 4.0 mg) (Pyrek and Baranowska, 1977). Fraction F38–45 on CC using CH2Cl2–EtOAc (4:6), gave β-sitosterol glucopyranoside (7, 50 mg) (Seo et al., 1978). Preparative TLC of F50–58 eluted with ethyl acetate–MeOH (9.5:0.5) from the column, using CH2Cl2–MeOH (7:3) as the solvent system yielded five fractions. The polar fraction was further purified on a Sephadex LH-20 column using CH2Cl2–MeOH (1:1) and furnished amentoflavone (8, 6 mg) as a yellow powder (Goh et al., 1992; Lin et al., 2001) and friedelane-3,7-dione (9, 3.5 mg) (Patra et al., 1990). The structures were established conclusively by UV, IR, MS and extensive 1H and 13C NMR spectra analysis and comparison with data from the literature cited above.

4. Chemotaxonomic significance

The present study reports the isolation of five friedelane-type triterpenoids (1–4, 9), one hopane-type triterpenoid (5), one lupane-type triterpenoid (6), one steroid (7), and one flavone dimer (8) for the first time from the leaves of Drypetes gerrardii.
The occurrence of friedelane-type triterpenoids (1–3, 9) in *D. gerrardii* is in agreement with triterpenoid constitution previously reported in other species of *Drypetes* (Dupont et al., 1997; Lin et al., 2001; Ngouela et al., 2003; Wandjia et al., 2000, 2003; Wansi et al., 2006). Thus, the isolation of triterpenoids 1–3, 9 from *Drypetes* species indicates that these compounds could be chemotaxonomic markers for the *Drypetes* genus.

Interestingly, 5β,24-cyclofriedelan-3-one (4), 3-epimoretanol (5) and resinone (6) were characterized for the first time from the genus *Drypetes*. Therefore, compounds 4–6 might be useful taxonomic markers for the genus, and thus a contribution to chemotaxonomic studies of the spurge (Euphorbiaceae) family. On the other hand, amentoflavone (8) has been reported from *Drypetes littoralis* (Lin et al., 2001) and this is the only record of flavones in a *Drypetes* species, despite their widespread occurrence in the Euphorbiaceae family (Scheme 1).

Acknowledgments

M.M. Ng’ang’a gratefully acknowledges an in country Postgraduate Scholarship by DAAD (German Academic Exchange Services) as well as a funded research visit to the University of Paderborn, Germany where all the spectroscopic work was carried out. She thanks Kenyatta University for granting her study leave during the research visit and Sigma Xi, Grant-in-Aid of research for their support.

References